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The problem of numerical realization of a function of the hereditary operator 

acting on some function of time is considered. Laplace transformations are 
used for the operators with kernels of the Rabotnov and Rzhanitsyn type to 
obtain formulas which reduce the problem in question to that of computing 

a quadrature. When the variable assumes large values, the formulas become 
asymptotic equations with an estimable error of approximation. 

1. Effective solution of a wide class of problems of hereditary elasticity requires 
the application of the Volterra principle [l]. The replacement of the elastic constants 
of the material by the corresponding rheological operators, which is carried out in 
the solution of the problem for a perfectly elastic body, leads to the necessity of com- 
puting the omvolutions of the form 

qj*qk*f = qj* (Qk”f)Y 4’7 = q* (4*n-1f) 

Here cp is a function of the spatial coordinates 5k and integral operators qi* in 
the sense adopted in [l], t is time, and q (t - T) is a kernel of the operator q*, 
depending on the difference of the arguments. 

If ‘p is a rational function of the resolvent operators of the same class, then the 
expression (1.1) reduces to quadratures according to the well known rules [l]. In the 
general case the numerical realization of (1.1) is achieved by writing the function ‘c 

in the form of a series in powers of the operators q* , and then applying the formulas 

(1.1). A detailed interpretation of the functions of the operators and consequent com- 
putations are, as a mle, very time-consuming except in the case of small t, the 
latter ensuring the rapid convergence of the series. It is therefore expedient to constr- 

uct effective computational algorithms for the expressions (1.1). 
When Laplace transforms are applied to the initial relationships of the theory of 

hereditary elasticity we find, that in order to compute (1.1). it is necessary to invert 
the expression cp (5; Q (p))F (p) w h ere p is the transformation parameter, Q (P) = 

L {Q (t>) and F (P> = L if @)I are the Laplace transforms of the kernel q (t) 
of the operator q’ and of the function f (t) respectively. Applying this to the operat- 
ors q* with the hereditary kernels appearing as the fractional power exponents% (fi, 

r) due to Pabotnov [l] and the function P, (h, t) due to Rzhanitsyn C21 

%(By 0 = $ I I”:;;;i,, 9 p<o, O<r=l+a<l ( 1.2) 
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P, (h, 1) = $-#a,hr, h,<O, O<r=l+a<i (1.3) 

the Laplace transforms of which are analytic functions with a characteristic singularity 
in the form of a branch point on the complex p -plane, we can compute the convolu- 
tions of the type (1.1) over a wide range of values of t. 

2. Let q~ be a function of a single opeator q* and 

Q (P> = Ql (z>, z = (p - A)‘, h < 0, 0 < r < 1 (2.1) 

According to the Mellin formula, 

cp (q*) f (t) = & \ cp (Q (P)) F (PI ept dp (2.2) 

o--i00 

cp (q*) z ‘p(s; q*), cp (Q (~1) = cp (z; Q (~4) 

Here the integration is carried out along the straight line Re p = cr situated in the 
p -plane to the right of all singularities of the integrand function. We shall assume 

that in the finite part of the plane, with 1 arg p 1 < TC , this function can only have 

a single branch point p = h and, perhaps, a finite number of poles, none of them 
lying on the negative realsemi-axis to the left of the branch point. To separate a 
single-valued branch of the function, we produce a cut along this semi-axis to the 

left of the point p = h. Taking into account the residues of the poles, we replace 
the integration path in (2.2) by a contour consisting of the upper r+ and lower r_ 
edge of the cut, the arcs rI and r2 of the circle of infinite radius and of the circle 

re of vanishingly small radius, with centers at the point p = ?L . Assuming that 
the conditions of the Jordan lemma hold and the integrals along the arcs rr and rz 

vanish, we obtain 

cp (4”) f (t) = & [‘p (Q (p)) F (p) ePt dp -I- c ys [cp (0 (P)) F (P) ep*l (2.3) 
H s 

Here the contour H = I’_ + Fe + I’+ is traversed in the anticlockwise direction, 
and the residues are calculated over all poles ps, larg bs - h) 1 # TC. 

Substitution of ,z = (p - h)’ from (2.1) maps the contour H onto the contour 
HI in the i -plane, the latter contour consisting of the arcs arg z = +nr and 

the arc of the circle 1 2 1 = E’ = El. Let 

(P (0 (PI) = ‘~1 (4 = z-‘@ (4 
Here v > 0, and 0 (z) is a single-valued function analytic on the contour HI 

and in the region 1 z 1 < cl . In this case we have the following approximation C31 

on H, : 

(3 (z) = 2 mCk) (0) -$ + pn (z), dk) (z) -_ -g , n>O (2.4) 

k=O 
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(2.5) 

where l is a line connecting the point z of the contour H1 with the point z = 0. 

We assume that the following representation is possible for the unction F @) 
analytic on H, but not necessarily regular at the point p = A, for all p E If : 

m>O, pso (2.6) 

1 ym I< A 1 p - a 1 m+p+l, A = const > 0 (2.7) 

The conditions (2.6) and (2.7) are satisfied,- in particular, by the transforms of the 
functions t8 (6 > -1), sin ot, cos ot, ehf (h > A). 

By virtue of the equation [4] 

& ‘(P-h)‘Oepfdp=Tr(t;o)eh’, !!“r(t;o)n~G, @so (2.8) 
I 

the expations (2.4) and (2.6) transform (2.3) to the form 

(2.9) 

&( 1 +JO+J+){ept [Ym’P(Q(P))+Pn~bj(P--h)j+~--ldp} 
r- j=O 

If the numbers n and m in (2.4) and (2.6) satisfy the inequalities 

r(n+1)+p>m---, m+P+i>m-- (2.11) 

then the integral along I?, in (2.10) vanishes as E -+ 0 by virtue of (2.5) and (‘2.7) 
and the boundedness of the function @ (z) near the point z = 0 . The remaining 
integrals along the edges I’+ and r_ of the cut on which p - h = xt?*i*, x = 
1 p - h 1, yield the formula 

rm* (t) = - f e?J j e-W (x) & 
0 

(2.12) 

Here 1’ (5) denotes the imaginary part of the expression within the square brackets 
in (2.10) at the upper edge of the cut, i. e. 
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We note that if pn = 0 or ‘pm = 0, then the first or second condition of (2.11). 
becomes respectively superfluous. 

Taking into account the relations (2.5) and (2.7) we obtain, from (2.12) and 
(2.131, the following estimate (where the maximum is taken over arg z = & nr) : 

(2.14) 

When the valwes of t are sufficiently large, then (2.14) implies that rmn (t) can be 
neglected and the expression (2.9) used as an asymptotic expansion.Moreover, the form 

ulas (2.9) and (2.12) make possible ~ecalcula~on of the convolution cp (q*)f (t) also for 

other valuesof t, provided that the quantities pll and yrn in (2.13) areexpressedin 
terms of the relations (2.4) and (2.6) and an approximate value of the quadrature( 2.12) 

is found. The numbers n and m should be chosen as small as possible, with (2.11) 
taken into account. The integral in (2.12) is a Laplace transform, with parameter t , 
of the function of real variable V (2). This proves the following theorem, 

T h e o r e m. Let 
(I) a function rp (u) analytic in the circle 1 u 1 f ~0 (~0 = con& > 0) 

define a function of the hereditary operator q (q*) (1.1) and let the Laplace trans- 
form Q @) of the operator q* on the plane of the transformation parameter have 
a branch point p = h (A \c 0) and cp (Q (p)) = (p - A)-“‘@ I(p - h)‘], 
0 < r < 1, v > 0 where cf, (z) is a single-valued function on the rays arg z = 

& nr, at the point z = 0 and in its neighborhood; 
(2) the operator function rp (q*) act on the function f (t) the Laplace trans- 

form F (p) of which admits, on the negative semiaxis, at p < h and near the point 

p==A * the representation (2.61, (2.7): 
(3) the product rp (Q (p))F (p) tend to zero uniformly in arg p as p -+ 00 

and Rep C (I = eon& ; 
(4) amongst the singularities of the expression (p (Q (p))P (p) there exists, on 

a finite part of the p -plane with 1 arg p 1 < n , only a single branch point 
p = k and possibly a finite number of poles none of which lie on the negative part 

of the real semi-axis to the left of the point p = a. 

Then the convolution up (~*)f (t) will be given, for any finite t > 0 , by the 
formulas (S&9), (2.12) and (2.13), and at sufficiently large t the relations (2.9) will 
assume the meaning of an asymptotic equation with (2.14) providing the estimate of 
its remainder term. 

The formula (2.9) enables us, in particular, to establish the behavior of the con- 
volution 4, (q*)f (it) as t -+ 00 . A finite limit value exists if Reps < 0 and 
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either h < 0 or k, = 0 for all poles p8, at which the residues are computed 
without however positive powers of t appearing in the expansion (2.9). When h = 
0 and f (t) = const , the index p = - 1 and, provided that the conditions 

Reps < I>, Q> (0) # 0 hold, the convolution is bounded if 9 = 0. 
From the known theorem of operational calculus we have 

provided that the Emits in question exist, The assertion (2.15) represents a limiting 
theorem far the hereditary operators, established in Cl]. 

3. Let us now consider the operator q* with the kernel (1.2) I&Z (B, t), x > 0. 
Since L (3, (6, t)} = @’ - p)-l , we must put h = 0 and z = p and 
assume, in the case when g, (0 @f) h as no singularity at the point p = 0 a that 
Y = 0. We also have 

CD (z) = cp (x/(2 - fi)), Wk) (0) = (- l)“d”cp (- xlfJ)la$k (3.1) 

Let the function cp (u) be analytic in the circle 1 u 1 < uo and 

x 
max - 

I I arg z=+Ar Z- s 
Lzzz- f <Go 

Then, when r < ‘/a g = 1 fl 1 and r > r/z g = [ fl 1 Sin IV. In this case 

the quantities MO andMn+l from (2.14) can be written in the form of a series. In 

particular, for Mn+l we have 

sj, = (j + n)! &p(j) (O)/[(j - l)! j!] 

If all @ (O), i = 0, 1, 2, . . ., have the same sign, then 

When the sign alternates, i.e., sign rpci) (0) = - sign y,(j+lJ (0), j =1: 0, 1, 
2, _ . ., we have 
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1, Jfo+(-gI t3a3) 

The above inequalities simplify the estimation of rrnn (t) when formula (2.14) is us- 
ed. 

When f (t) = const and h = 0 in (2.61, we have b, # 0, bj = 0 (j > 

I), p = - I, ym = 0, and the formula (3.1) coincides, in the absence of the res- 
idues, with the ~ymptotic expansion obtained in [5]. If f (t) = tb (6 > - I), 
cp (q*) = q*a, 0 = 1, 2, . . ., (r (f) = X% (@, t), then b,= 1‘ (1 + 6), 
bj = 0 (1 > i), p = - 6 - 1, ym = 0. In this case the formula (3.1) and the 
estimates (2.14) and (3.2) yield the relations obtained in [S]. 

E x a m p 1 e 1. Let cp (x3,* (B)) = (1 f x3,* (Q)“‘, x > 0, 6 < 0, f ft) = 1. 
Then F (p) = p-l and in (2.6) we have h = 0, 6, = 1, m = 0, P = -1, Ym = 0. 
When n = 1 , we have, in accordance with (3.11, 

(1 + x3,* @))“‘Z. I =-J (1 - -$- 282 (% ” xg_l)‘,* I (I_1 r) i- )*l (t) 

From (2.14) we obtain 

I r1 (t) I .< lw,r (2r)P i (WI, M, < xg-b/zgl-L/f (‘il i (4g,) + 1) 

Here, when P < l/, g := I 6 I, g, = I PI I, and when r > li, g = I b i sin XT, SZI = I&! 
sinxr, f3r = 6 - It . Thus, if cc = -0.7 (r = 0.3), b = -1, x - 0.5 ,then 

(1 + x3,*@))‘kt=Q25- 0.157~~013 + Q (t) and 1 q (t) 1 Q 0.105t-“.6. The above 
results can be extended to the case of two and more operator arguments of the function 

cp l 
In particular, when ‘p = q (~r3,~* (M, %%,L (M) and under the condition 

that the operational analog of this function is bounded in the neighborho~ of the point 
p = 0 and 1 + ai = err, 1 + ‘% = Czp where cr and c2 are positive integers 

and O<r<l, we have the following relations for the function CD (z) : 

a) (2) = cp (x1 / (zC1 - f&)9 x2/ Fe- 6,117 zI;/ 

Using similar arguments, we obtain 

cp (XlS,l*&), n.ga** (82N f (4 = j;, 7, bj qp 
T,(t;rkfj+~f$ (3*4) 

k=O j=O 

When or = C% = 1 , the following relation holds: 

m(k) (0) = (--l)“(8 / ag, + a / a&P 9, (--X1 / Pi, --x2 i Bd 

The estimate of rnn (t) retains the form of (2.14) when Y = 6, h = 0. 

E x a m p 1 e 2. The operator expression (1 + “ia,* (fir) $- @CC* @z))“‘*t+ X1, 

x2 > 0, PI? Pa < 0, has, according to (3.4), the following representation: 

(I + x13,* &) -t_ Kg,* (&))““.l = (1 - -g - -p)‘/* - 
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%kq” + x2Sz2 t -r 
2 (~-.~~f~;l-~p~l)~~~ r (1-r) -t 5 (f) 

From (2.14) we obtain 

I r1 (t) I 5 
M2r Or) @’ 

zn , M2f 1 + ’ @l g ~2’)“* x 
( 

i X2 

\Ff$- lh-821+$) 

r=1+a, x == max {x1, xp}, g = min {gj), j = 1, 2, 3, 4; r 6 IIs 

r > ‘I2 gj = ( f3j 1 sin nr; 

@I = x1 - PI, e2 = x, - B2) 

L = -‘/2 IQ + e2 +- ((q - e# + 4~,xJhl 

Asymptotic expansion of the function of the operator q* with kernel (1.3) 
in the analogous manner. 

E x a m p 1 e 3. Let cp (s*)f (t) = (1*“.1, w = 1, 2, . . ., 4 (t) = XI-‘, 

0,h <0. Then 

1229 

gj = I Bjl 

is obtained 

(J”, t), x > 

‘p (Q (p)) = x0?‘, z = @ - h)‘, @ (z) = @ (0) = x0, Y=O 

m 

F (p) = + = c (- l)ih-j-1 (p - hf + (- j)m+lp-lh-m-l (p - l”p+1 
j=o 

Thus we have, in accordance with the expressions (2.4), (2.6), (2. ‘7) and (2.14), n = 
0, p,, = 0, 1~ = 0, A = I h I--m--2, M, = x”‘, M,,l = 0 , and from (2.9), (2.14) foll- 
ows 

m 

xv:” &).I = .@P 
c 

(- l)‘h-jMIT, (t; j - ro) + 

j=o 

(3.5) 

?P 

(- ky.0 + rmn (t) 

1 rmn (t) 1 < x0 1 h 1 -nt-2ehfT2 (t; m - ro + 2) / rc, m - rw + 2 > 0 

If rw is an integer, then the branch point of the function 

at p = h. is replaced by a pole, and this simplifies the expression (3.5) since in this 
case r,n (4 = 0 and we have T, (t; j - MI) = 0 when j > r. . 

4. Using (2.12). we construct an analytic expression for approximating the quant- 

ity rmn (t) . Let us approximate the function V (z) using combinations of the ex- 
ponential expressions and power iunctions. Since the multiplier G’ decays rapidly, 
it is sufficient to attain a good approximation to V (2) at the initial part of the inter- 
val of integration, ensuring at large 5 only that the manner of behavior is similar. 
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Let 
V(X)~~UjXbjt?“jx, Sj>- 1, hj\(O 

j 

Then 
co 

s e-“‘V (X) dX = c bj 1‘ (“j + I) 

0 j (t - a,)‘j+l 
-/- f rxt [V (x) - C ajxb4W] dx 

o 
j 

The last integral can be used to assess the error of approximation. 

To illustrate this, let us consider the convolution 3,* (f~). 1 the Laplace trans- 
form of which @’ - b)-lp-l for 0 < r < 1, B < 0, I arg p 1 < n has a unique sing- 
.ularity, namely a branch point at p = 0. Since h = 0 and F (p) = P-‘, there- 

fore we have in (2.6) bo = 1, m = 0, CL = -t and vrn = 0. Here Q, (z) = (Z -- 

B)-’ and Y = 0, and to fulfil the conditions (2.11) it is sufficient to put n=O, 
which yields pn = fi-1~’ (p’ - p)-1. In accordance with (2.9). (2.12) and (2.13), 
we obtain [7] 

m 

s ,-rg3pt x'-ldx 
(4.1) 

0 
zar + 2xrcos Jrr + 1 

Let r = 0.3 (a =-0.7). We interpolate the decaying function xr-l (xZr + 2~’ 
co9 rcr + 1)-i on the interval [0,4] using the expression 

,ple-0.92 (1 - i.#x" + 0.587x2’ + 0.02~s’) 

From (4.1) follows 
4 

?o., @)*I = - @-r+(nfi)-rsinrcr x AjI’(jr)yj A, = 1, (4.2) 
j=l 

A2 = 4.18, A3 = 0.587, A, = 0.02, y = (r + 0.3)-p, 7 = 1 f3 I”’ t 

Comparison of the values computed with help of the formula (4.2) with those given 
in tables [8] shows that at ‘5 = 0.1 the error is about 570, at z = 0.2 it does not ex- 
ceed 1.5% and at z >, 0.3 the values practically coincide. It must however be re- 
membered that the asymptotic expansion of 3,* (B) - 1 [8] hold only when r > 1. 
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